Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 15562, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968145

RESUMO

Revascularization of ischemic tissues is a major barrier to restoring tissue function in many pathologies. Delivery of pro-angiogenic factors has shown some benefit, but it is difficult to recapitulate the complex set of factors required to form stable vasculature. Cell-based therapies and pre-vascularized tissues have shown promise, but the former require time for vascular assembly in situ while the latter require invasive surgery to implant vascularized scaffolds. Here, we developed cell-laden fibrin microbeads that can be pre-cultured to form primitive vascular networks within the modular structures. These microbeads can be delivered in a minimally invasive manner and form functional microvasculature in vivo. Microbeads containing endothelial cells and stromal fibroblasts were pre-cultured for 3 days in vitro and then injected within a fibrin matrix into subcutaneous pockets on the dorsal flanks of SCID mice. Vessels deployed from these pre-cultured microbeads formed functional connections to host vasculature within 3 days and exhibited extensive, mature vessel coverage after 7 days in vivo. Cellular microbeads showed vascularization potential comparable to bulk cellular hydrogels in this pilot study. Furthermore, our findings highlight some potentially advantageous characteristics of pre-cultured microbeads, such as volume preservation and vascular network distribution, which may be beneficial for treating ischemic diseases.


Assuntos
Fibrina/farmacologia , Hidrogéis/farmacologia , Neovascularização Fisiológica , Engenharia Tecidual , Animais , Células Cultivadas , Fibrina/química , Fibroblastos/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrogéis/química , Camundongos , Microesferas , Microvasos/efeitos dos fármacos , Microvasos/crescimento & desenvolvimento , Alicerces Teciduais/química
2.
Biotechnol Bioeng ; 116(2): 415-426, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30414271

RESUMO

Forming functional blood vessel networks is a major clinical challenge in the fields of tissue engineering and therapeutic angiogenesis. Cell-based strategies to promote neovascularization have been widely explored, but cell sourcing remains a significant limitation. Induced-pluripotent stem cell-derived endothelial cells (iPSC-ECs) are a promising, potentially autologous, alternative cell source. However, it is unclear whether iPSC-ECs form the same robust microvasculature in vivo documented for other EC sources. In this study, we utilized a well-established in vivo model, in which ECs (iPSC-EC or human umbilical vein endothelial cells [HUVEC]) were coinjected with normal human lung fibroblasts (NHLFs) and a fibrin matrix into the dorsal flank of severe combined immunodeficiency mice to assess their ability to form functional microvasculature. Qualitatively, iPSC-ECs were capable of vessel formation and perfusion and demonstrated similar vessel morphologies to HUVECs. However, quantitatively, iPSC-ECs exhibited a two-fold reduction in vessel density and a three-fold reduction in the number of perfused vessels compared with HUVECs. Further analysis revealed the presence of collagen-IV and α-smooth muscle actin were significantly lower around iPSC-EC/NHLF vasculature than in HUVEC/NHLF implants, suggesting reduced vessel maturity. Collectively, these results demonstrate the need for increased iPSC-EC maturation for clinical translation to be realized.


Assuntos
Diferenciação Celular , Células Endoteliais/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neovascularização Fisiológica , Animais , Células Cultivadas , Fibrina/metabolismo , Fibroblastos/fisiologia , Histocitoquímica , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos SCID
3.
Biomaterials ; 181: 280-292, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30096562

RESUMO

During normal development, the extracellular matrix (ECM) regulates cell fate mechanically and biochemically. However, the ECM's influence on lineage reprogramming, a process by which a cell's developmental cycle is reversed to attain a progenitor-like cell state followed by subsequent differentiation into a desired cell phenotype, is unknown. Using a material mimetic of the ECM, here we show that ligand identity, ligand density, and substrate modulus modulate indirect cardiac reprogramming efficiency, but were not individually correlated with phenotypic outcomes in a predictive manner. Alternatively, we developed a data-driven model using partial least squares regression to relate short-term cell states, defined by quantitative mechanosensitive responses to different material environments, with long-term changes in phenotype. This model was validated by accurately predicting the reprogramming outcomes on a different material platform. Collectively, these findings suggest a means to rapidly screen candidate biomaterials that support reprogramming with high efficiency, without subjecting cells to the entire reprogramming process.


Assuntos
Materiais Biocompatíveis/farmacologia , Biologia de Sistemas/métodos , Animais , Cálcio/metabolismo , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Matriz Extracelular/química , Mecanotransdução Celular/efeitos dos fármacos , Camundongos
4.
Acta Biomater ; 55: 144-152, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28365482

RESUMO

Critical limb ischemia impairs circulation to the extremities, causing pain, disrupted wound healing, and potential tissue necrosis. Therapeutic angiogenesis seeks to repair the damaged microvasculature directly to restore blood flow. In this study, we developed modular, micro-scale constructs designed to possess robust handling qualities, allow in vitro pre-culture, and promote microvasculature formation. The microbead matrix consisted of an agarose (AG) base to prevent aggregation, combined with cell-adhesive components of fibrinogen (FGN) and/or hydroxyapatite (HA). Microbeads encapsulating a co-culture of human umbilical vein endothelial cells (HUVEC) and fibroblasts were prepared and characterized. Microbeads were generally 80-100µm in diameter, and the size increased with the addition of FGN and HA. Addition of HA increased the yield of microbeads, as well as the homogeneity of distribution of FGN within the matrix. Cell viability was high in all microbead types. When cell-seeded microbeads were embedded in fibrin hydrogels, HUVEC sprouting and inosculation between neighboring microbeads were observed over seven days. Pre-culture of microbeads for an additional seven days prior to embedding in fibrin resulted in significantly greater HUVEC network length in AG+HA+FGN microbeads, as compared to AG, AG+HA or AG+FGN microbeads. Importantly, composite microbeads resulted in more even and widespread endothelial network formation, relative to control microbeads consisting of pure fibrin. These results demonstrate that AG+HA+FGN microbeads support HUVEC sprouting both within and between adjacent microbeads, and can promote distributed vascularization of an external matrix. Such modular microtissues may have utility in treating ischemic tissue by rapidly re-establishing a microvascular network. STATEMENT OF SIGNIFICANCE: Critical limb ischemia (CLI) is a chronic disease that can lead to tissue necrosis, amputation, and death. Cell-based therapies are being explored to restore blood flow and prevent the complications of CLI. In this study, we developed small, non-aggregating agarose-hydroxyapatite-fibrinogen microbeads that contained endothelial cells and fibroblasts. Microbeads were easy to handle and culture, and endothelial sprouts formed within and between microbeads. Our data demonstrates that the composition of the microbead matrix altered the degree of endothelial sprouting, and that the addition of hydroxyapatite and fibrinogen resulted in more distributed sprouting compared to pure fibrin microbeads. The microbead format and control of the matrix formulation may therefore be useful in developing revascularization strategies for the treatment of ischemic disease.


Assuntos
Durapatita/química , Fibrinogênio/química , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Sefarose/química , Sobrevivência Celular , Células Cultivadas , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Microesferas
5.
ACS Biomater Sci Eng ; 2(11): 1914-1925, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29503863

RESUMO

Microvascular endothelial cells (MVEC) are a preferred cell source for autologous revascularization strategies, since they can be harvested and propagated from small tissue biopsies. Biomaterials-based strategies for therapeutic delivery of cells are aimed at tailoring the cellular microenvironment to enhance the delivery, engraftment, and tissue-specific function of transplanted cells. In the present study, we investigated a modular tissue engineering approach to therapeutic revascularization using fibrin-based microtissues containing embedded human MVEC and human fibroblasts (FB). Microtissues were formed using a water-in-oil emulsion process that produced populations of spheroidal tissue modules with a diameter of 100-200 µm. The formation of MVEC sprouts within a fibrin matrix over 7 days in culture was dependent on the presence of FB, with the most robust sprouting occurring at a 1:3 MVEC:FB ratio. Cell viability in microtissues was high (>90%) and significant FB cell proliferation was observed over time in culture. Robust sprouting from microtissues was evident, with larger vessels developing over time and FB acting as pericyte-like cells by enveloping endothelial tubes. These neovessels were shown to form an interconnected vascular plexus over 14 days of culture when microtissues were embedded in a surrounding fibrin hydrogel. Vessel networks exhibited branching and inosculation of sprouts from adjacent microtissues, resulting in MVEC-lined capillaries with hollow lumens. Microtissues maintained in suspension culture aggregated to form larger tissue masses (1-2 mm in diameter) over 7 days. Vessels formed within microtissue aggregates at a 1:1 MVEC:FB ratio were small and diffuse, whereas the 1:3 MVEC:FB ratio produced large and highly interconnected vessels by day 14. This study highlights the utility of human MVEC as a cell source for revascularization strategies, and suggests that the ratio of endothelial to support cells can be used to tailor vessel characteristics. The modular microtissue format may allow minimally invasive delivery of populations of prevascularized microtissues for therapeutic applications.

6.
Acta Biomater ; 29: 33-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26481042

RESUMO

A modular tissue engineering approach may have advantages over current therapies in providing rapid and sustained revascularization of ischemic tissue. In this study, modular protein microbeads were prepared from pure fibrin (FIB) and collagen-fibrin composites (COL-FIB) using a simple water-in-oil emulsification technique. Human endothelial cells and fibroblasts were embedded directly in the microbead matrix. The resulting microbeads were generally spheroidal with a diameter of 100-200µm. Cell viability was high (75-80% viable) in microbeads, but was marginally lower than in bulk hydrogels of corresponding composition (85-90% viable). Cell proliferation was significantly greater in COL-FIB microbeads after two weeks in culture, compared to pure FIB microbeads. Upon embedding of microbeads in a surrounding fibrin hydrogel, endothelial cell networks formed inside the microbead matrix and extended into the surrounding matrix. The number of vessel segments, average segment length, and number of branch points was higher in FIB samples, compared to COL-FIB samples, resulting in significantly longer total vessel networks. Anastomosis of vessel networks from adjacent microbeads was also observed. These studies demonstrate that primitive vessel networks can be formed by modular protein microbeads containing embedded endothelial cells and fibroblasts. Such microbeads may find utility as prevascularized tissue modules that can be delivered minimally invasively as a therapy to restore blood flow to ischemic tissues. STATEMENT OF SIGNIFICANCE: Vascularization is critically important for tissue engineering and regenerative medicine, and materials that support and/or promote neovascularization are of value both for translational applications and for mechanistic studies and discovery-based research. Therefore, we fabricated small modular microbeads formulated from pure fibrin (FIB) and collagen-fibrin (COL-FIB) containing endothelial cells and supportive fibroblasts. We explored how cells encapsulated within these materials form microvessel-like networks both within and outside of the microbeads when embedded in larger 3D matrices. FIB microbeads were found to initiate more extensive sprouting into the surrounding ECM in vitro. These results represent an important step towards our goal of developing injectable biomaterial modules containing preformed vascular units that can rapidly restore vascularization to an ischemic tissue in vivo.


Assuntos
Proliferação de Células , Colágeno/química , Fibrina/química , Fibroblastos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Microesferas , Células Cultivadas , Fibroblastos/citologia , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...